

Risk factors of impaired glucose metabolism in transfusion-dependent patients with β-thalassemia: a single-center retrospective observational study

Venou T.M.¹, Kyriakidis F.¹, Barmpageorgopoulou F.¹, Theodoridou S.², Vyzantiadis A.², Klonizakis P.³, Gavriilaki E.⁴, Vlachaki E.³

¹Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, ²Hemoglobinopathies prevention unit, Hippokration General Hospital, Thessaloniki, Greece, ³Adult Thalassemia Unit, 2nd Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece, ⁴2nd Propedeutical Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece

Background

B-thalassemia is the most common genetic hematological disorder, characterized by reduced production or complete absence of β -globin chains. It is characterized as transfusion-dependent (TDT) and non-transfusion-dependent.

Material and Method

Adult Thalassemia Unit Hippokration General Hospital, Thessaloniki (2018-2022)

- The endocrine disorders associated with beta-thalassemia are mainly linked to: 1. iron overload, 2. chronic anemia, and 3. hypoxia.
- In literature, the reported frequency of glucose metabolism disorders in patients with transfusion-dependent β -thalassemia ranges from 0% to 35% for Diabetes Mellitus(DM) and from 20% to 30% for Impaired Glucose Tolerance (IGT).

Objectives

- Investigation of the frequency and risk factors for the occurrence of glucose metabolism disorders in patients with transfusion-dependent beta-thalassemia.
- Correlation of pancreatic iron deposition with indices of iron overload.

• Diagnosis based on the criteria of American Diabetes Association:

Fasting serum glucose >126mg/dl (DM) Serum glucose (2h-OGTT) >200mg/dl (DM) Serum glucose (2h-OGTT) >140mg/dl (IGT)

Recording of data from medical history regarding laboratory test results, medication use, splenectomy history, HCV infection, age, gender, cardiac, liver, and pancreatic MRI T2*, annual volume of transfused blood, genotype, chelation therapy, blood group, average body weight, and cardiac ejection fraction.

Results

- The occurrence of glucose metabolism disorders was significantly associated with age and serum gamma-glutamyl transferase (GGT) levels (p: 0.02).
- No statistically significant difference was observed between the groups for the other examined parameters (p>0.05).
- The administration of beta-blockers was significantly associated with glucose metabolism disorders (p: 0.02).
- Multivariable logistic regression did not reveal a significant effect of the examined variables on glucose metabolism disorder.

- Performing multivariable logistic regression.
- Correlation of pancreatic MRI T2* with: 1. serum ferritin, 2. liver MRI T2*, and 3. cardiac MRI T2*.

Statistical analysis **SPSS** (27.0.1.0)

Level of statistical significance:0.05

Variables	P-value
Age	0.02
GGT	0.02
B-blockers	0.02

Pancreatic MRI T2*	Pearson coefficient	p- value
Liver MRI T2*	-0.27	0.24
Heart MRI T2*	0.45	0.04
LIC	0.16	0.49
Fasting serum glucose	-0.33	0.15
Serum ferritin	-0.05	0.83

Multivariate logistic regression

Variables	p- value	OR	95%CI
Age	0.16	1	0.97-1.1
ALT	0.71	0.98	0.91-1.06
AST	0.64	1	0.96-1.05
GGT	0.14	1	0.99-1.07
Heart MRI T2*	0.19	0.9	0.81-1.04
B-blocker	0.18	2.4	0.63-1.7

A significant positive linear correlation was observed between pancreatic MRI T2* and cardiac MRI T2* (Pearson coefficient: 0.45, p: 0.04).

Conclusions

- High levels of gamma-glutamyl transferase (γ GT) indicate that oxidative stress plays a critical role in the development of glucose metabolism disorders in patients with TDT.
- Pancreatic MRI T2* can predict cardiac iron overload in patients with TDT.
- Further research is required to identify the factors contributing to glucose metabolism disorders and to find reliable prognostic biomarkers in patients with TDT.

References

- Farmakis D, Porter J, Taher A, et al (2022) 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia. Hemasphere 6. • Venou TM, Barmpageorgopoulou F, Peppa M, Vlachaki E. Endocrinopathies in beta thalassemia: a narrative review. Hormones (Athens) (2023) Dec 16.
- Evangelidis P, Venou T-M, Barmpageorgopoulou F, Vlachaki E, Gavriilaki E (2023) on behalf of the International Hemoglobinopathy Research Network (INHERENT). Endocrinopathies in Hemoglobinopathies: What Is the Role of Iron?. International Journal of Molecular Sciences. 24(22):16263.
- De Sanctis V, Soliman AT, Elsedfy H, et al (2016) The ICET-A recommendations for the diagnosis and management of disturbances of glucose homeostasis in thalassemia major patients. Mediterr J Hematol Infect Dis 8.