

Granulocyte Transfusion (GTX): a bigger picture

Introduction to granulocyte transfusions

- Neutrophils are the most frequent leukocyte cell type in the peripheral blood compartment
- Neutrophils are part of the innate immunity and play an important role in the host defense against bacterial and opportunistic fungal pathogens
- Production in healthy adults is about 10¹¹ neutrophils per day
- The half-life of a neutrophil is about 8 hrs in the circulation.
 Once extravasated, neutrophils are assumed to dwell for about 24 hrs in the tissues or, at most, for about 48 hrs when activated by survival factors

Neutrophil Function

Apoptotic Features in Neutrophils

Type of infection	# treated patients	# evaluable patients	# successfully treated (%)
Bacterial septicemia	298	206	127 (62)
Sepsis, organism unspecified	132	39	18 (46)
Pneumonia, organism unspecified	120	11	7 (64)
Localized infections, other	143	47	39 (83)
Invasive fungus - yeast infections	67	63	18 (29)
Nonspecific fever	184	85	64 (75)

Renewed interest in GTx for the following reasons:

- Increased morbidity and mortality due to infections as a result of intensified chemotherapy and immunosuppressive treatment modalities
- Novel antibacterial or antifungal drugs are not sufficient to completely prevent the increased morbidity and mortality
- Improvement of donor pretreatment (G-CSF & dexamethasone) and techniques for granulocyte collection result in better yields untreated donors: 0.2-2.0 x 10¹⁰; treated donors: 4.0-10 x 10¹⁰ per GTx

G-CSF effect on granulocyte functions?

Caspase-3 Activity in Neutrophils

Neutrophil Apoptosis

NADPH oxidase in cultured Annexin^{neg} PMN

Ctimuluo	H ₂ O ₂ release (% fresh cell activity)				
Stimulus	Control	G-CSF	GM-CSF		
РМА	43.9	61.4	58.0		
STZ	67.5	79.9	74.2		
fMLP	57.6	168.3	212.0		

Neutrophil Chemotaxis upon Apoptosis

Functional Neutrophil Decay

-degranulation strongly reduced

-phagocytosis impaired

- NADPH oxidase activity best preserved

in vivo use of G-CSF and dexamethasone: effects on granulocyte numbers & function

BLOOD BANK DONORS for GTX

Granulocyte Concentrates and Logistics

- Relatives
- Unrelated community blood bank transfusion programs
 Price et al. Blood 2000; 95:3302-9
- Advantages and disadvantages

Hubel et al. Transfusion 2002; 42:1414-21:

related donors: > 5 days before effective GTx was organized

donors and motivation

higher increments

minor HLA incompatibility in future HSCT / BMT

Adverse Events in the Patient:

- Mild reactions in ~10%: fever and chills
- Severe side-effects ~1%: hypotension and respiratory distress (amphotericin B co-medication?)

Adverse Events in the Patient:

- TRALI in <0.1%: starting within 6 hrs after GTx
- Rapid alloimmunization: more prevalent in patients with neutrophil disorders compared with severely immunosuppressed patients
- Lack of neutrophil increments upon GTx
- Late leukocyte incompatibility: delayed or reduced myeloid engraftment after SCT

(Adkins et al. Blood 2000; 95:3605-12; Zubair et al. Transfusion 2003; 43:614-21)

Adverse Events in the Donor:

- Headache, bone pain, restlessness
- Hydroxyethyl starch (HES)-related severe itching
- Repeated G-CSF can result in strongly increased ANC;
 splenic rupture by repeated G-CSF has been reported
- Dexamethasone addition may induce early cataract (posterior capsule)

(Strauss Br J Haematol 2012; 158:299-306)

Established or Recommended Policy:

- ABO Rh match with the recipient is obligatory
- Prior irradiation with 15-30 Gy avoids problems of GVHD
- CMV infection: negative donors in negative recipients
- Screening recipients for HLA class I and II antibodies prior to GTx and afterwards, e.g. by using lymphocytotoxicity testing

Indications: Prophylaxis or Therapy?

Indications: Therapeutic Use in Neutropenia?

- Adequate dose of >0.5 x 10⁹/kg is the only determinant of efficacy in neonates
- Adult patients benefit from GTx when:
 - survival rate of untreated "control" patients is below 40% (RR = 8.9)
 - the dosage is adequate (RR = 4.2)
 - neutropenia exists for > 2 weeks (RR = 12.3)
- Cross-matched compatible leukocytes were used (RR = 8.0)

(Vamvakas & Pineda. J Clin Apheresis; 1996; 11: 1-9)

Indications: Therapeutic Use in Neutropenia?

 Therapeutic transfusion of adequate doses of compatible leukocytes reduced the relative risk of infection, death and death from infection

(RR = 0.075, RR = 0.224, and RR = 0.168, resp.)

(Vamvakas & Pineda. J Clin Apheresis; 1997; 12: 74-81)

Primary intervention

Authors	Design	Patients #	Bacterial	Fungal	Infection control %
Dignani <i>et al.</i> 1997	uncontrolled	15	0	15	74
Lee et al. 2001	uncontrolled	25	13	11	40
Illerhaus et al. 2002	uncontrolled	18	8	10	66
Hubel et al. 2002	matched pairs	74 vs 74	17 vs 17	57 vs 57	44 vs 59
Rutella et al. 2003	uncontrolled	20	11	7	50
Mousset et al. 2005	uncontrolled	44	13	31	82

Secondary prophylaxis

Authors	Design	Patients #	Bacterial	Fungal	Reactivation %
Illerhaus et al. 2002	uncontrolled	8 (HR 1)	5	2	0
Hubel <i>et al</i> . 2002	matched pairs	9 vs 9 (HR 2)	0	7 vs 7	0
Mousset et al. 2005	uncontrolled	23 (HR 1)	2	20	0

Indications: Prophylaxis in HSCT or BMT setting?

- Prophylactic transfusions did not result in significant differences with regard to infectious parameters
- Median number of Plt Tx during the course of neutropenia was reduced (p<0.02)

(Illerhaus et al. Ann Hematol. 2002; 81: 273-81)

- Transfusions did not result in differences in mortality between interventional or prophylactic treatment at day 30 (64 vs 65%)
- Shift from predominant use for bacterial containment toward prevention or treatment of fungal disease

(Mousset et al. Ann Hematol; 2005; 84: 734-41)

Alternative for GTx?

In case of prophylaxis in HSCT or BMT settings

- Myelosuppressive instead of myeloablative HSCT regimens
- Secondary antifungal prophylaxis with voriconazole in leukemic patients and HSCT recipients

(Cordonnier et al. Bone Marrow Transplant 2004; 33: 943-8)

Development of novel antimicrobial drugs

in vivo use of G-CSF and dexamethasone: effects on granulocyte numbers & function

After 24h storage...

0 hrs 24 hrs 48 hrs

Neutrophil Chemotaxis in vivo

¹¹¹Indium-labeled WBC scans to sites of tissue damage

Patient 1
severe mucositis

Adkins et al. Bone Marrow Transpl. 1997;19:809-12

Granulocyte Concentrates: neutrophil chemotaxis after 24 hours of storage

Unstimulated motility is slightly enhanced after 24h / directed chemotaxis is unaltered

Changes in gene expression of granulocytes during in vivo granulocyte colony-stimulating factor/dexamethasone mobilization for transfusion purposes

Agata Drewniak,^{1,2} Bram J. van Raam,^{1,2} Judy Geissler,¹ Anton T.J. Tool,¹ Olaf R.F. Mook,³ Timo K. van den Berg,¹ Frank Baas,³ and Taco W. Kuijpers^{1,2}

¹Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam; ²Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam; and ³Department of Neurogenetics, Academic Medical Center, Amsterdam, The Netherlands

Drewniak et al. Blood 2009; 113: 5979-5998

Treatment	Changed	Upregulated	Down-regulated
G-CSF/dexamethasone (in vivo)	861	365	496
G-CSF/dexamethasone (in vitro)	1823	512	1311
No treatment (in vitro)	1259	539	720

Fold change ≥ 3
P value ≤ 0.01

Expression of surface proteins: verification of up- and downregulation

Apoptosis

Up-regulated Down-regulated TNFR NAIP CARD4 NALP3 STEX GADD45A GSTP1 HIP1 RIP1 **TRADD GZMB** HIPK2 **FADD** TRAF2 Bid ? ANXA1 AZU1 IL10 caspase-8 PCB4 BAX CARD12 CARD9 ELMO2 ? STAT1 SPP1 Survival PRDX2 STK3 **CALPASTATIN GALECTIN** casp-9 CARD6 12 cytochrome c TNFRSF10A **APAF-1** TNFRSF25 caspase-3 IHPK2 (d)ATP

Programmed cell death

GALECTIN1

DDAH2

PERC

SH3GLB1

TNFSF12

SQSTM1

FAIM3

Expression of survival and function: verification of changes

Toll-like receptor—induced reactivity and strongly potentiated IL-8 production in granulocytes mobilized for transfusion purposes

Agata Drewniak,^{1,2} Anton T. J. Tool,¹ Judy Geissler,¹ Robin van Bruggen,¹ Timo K. van den Berg,¹ and Taco W. Kuijpers^{1,2}

Drewniak et al. Blood 2010; 115: 4588-4596

¹Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, and ²Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands